Parameter Optimization

Parameter optimization is a crucial aspect of strategy development that helps you find the best configuration for your trading strategies. Planar provides sophisticated optimization tools including grid search, Bayesian optimization, and custom optimization algorithms.

Overview

Parameter optimization in Planar allows you to:

  • Systematically explore parameter spaces - Test multiple parameter combinations efficiently
  • Find optimal configurations - Identify parameter values that maximize your objective function
  • Validate strategy robustness - Ensure strategies perform well across different parameter ranges
  • Avoid overfitting - Use proper validation techniques to prevent curve fitting

Key Features

  • Multiple Algorithms - Grid search, random search, Bayesian optimization
  • Parallel Execution - Leverage multiple CPU cores for faster optimization
  • Custom Objectives - Define your own optimization metrics
  • Result Analysis - Comprehensive tools for analyzing optimization results
  • Visualization - Plot optimization surfaces and parameter relationships

Optimization Workflow

The typical optimization workflow in Planar follows these steps:

  1. Define Parameters - Specify which strategy parameters to optimize
  2. Set Parameter Ranges - Define the search space for each parameter
  3. Choose Algorithm - Select optimization algorithm (grid search, Bayesian, etc.)
  4. Define Objective - Specify the metric to optimize (Sharpe ratio, profit, etc.)
  5. Run Optimization - Execute the optimization process
  6. Analyze Results - Review and validate the optimal parameters

Parameter Definition

Basic Parameter Setup

Define optimizable parameters in your strategy:

Parameter Ranges

Define the search space for optimization:

Advanced Parameter Types

Support for different parameter types:

Optimization Algorithms

Exhaustive search testing all parameter combinations:

Bayesian Optimization

Efficient optimization using probabilistic models:

Random sampling of parameter space:

Evolutionary Algorithms

Genetic algorithm-based optimization:

Objective Functions

Built-in Objectives

Planar provides several built-in objective functions:

Custom Objective Functions

Define your own optimization objectives:

Multi-Objective Optimization

Optimize multiple objectives simultaneously:

Optimization Configuration

Basic Configuration

Advanced Configuration

Result Analysis

Accessing Results

Result Visualization

Statistical Analysis

Validation and Overfitting Prevention

Cross-Validation

Walk-Forward Analysis

Out-of-Sample Testing

Performance Optimization

Parallel Processing

Memory Management

Early Stopping

Advanced Techniques

Hierarchical Optimization

Ensemble Optimization

Adaptive Optimization

Best Practices

Parameter Selection

  1. Start Simple - Begin with a few key parameters
  2. Domain Knowledge - Use reasonable parameter ranges based on market knowledge
  3. Correlation Awareness - Avoid highly correlated parameters
  4. Stability Testing - Ensure parameters are stable across different market conditions

Optimization Strategy

  1. Coarse to Fine - Start with coarse grid search, then refine with Bayesian optimization
  2. Multiple Objectives - Consider multiple metrics, not just returns
  3. Robustness Testing - Test parameter sensitivity and stability
  4. Out-of-Sample Validation - Always validate on unseen data

Avoiding Overfitting

  1. Cross-Validation - Use proper time series cross-validation
  2. Parameter Constraints - Apply reasonable bounds to parameters
  3. Regularization - Penalize excessive complexity
  4. Walk-Forward Testing - Simulate realistic trading conditions

Troubleshooting

Common Issues

  1. Slow Optimization

    • Enable parallel processing
    • Reduce parameter space size
    • Use more efficient algorithms (Bayesian vs grid search)
  2. Poor Results

    • Check parameter ranges are reasonable
    • Verify objective function is appropriate
    • Ensure sufficient data for optimization
  3. Overfitting

    • Use cross-validation
    • Reduce parameter complexity
    • Test on out-of-sample data
  4. Memory Issues

    • Enable memory-efficient mode
    • Reduce batch size
    • Use disk caching

Debug Mode

See Also