Parameter Optimization
Parameter optimization is a crucial aspect of strategy development that helps you find the best configuration for your trading strategies. Planar provides sophisticated optimization tools including grid search, Bayesian optimization, and custom optimization algorithms.
Overview
Parameter optimization in Planar allows you to:
- Systematically explore parameter spaces - Test multiple parameter combinations efficiently
- Find optimal configurations - Identify parameter values that maximize your objective function
- Validate strategy robustness - Ensure strategies perform well across different parameter ranges
- Avoid overfitting - Use proper validation techniques to prevent curve fitting
Key Features
- Multiple Algorithms - Grid search, random search, Bayesian optimization
- Parallel Execution - Leverage multiple CPU cores for faster optimization
- Custom Objectives - Define your own optimization metrics
- Result Analysis - Comprehensive tools for analyzing optimization results
- Visualization - Plot optimization surfaces and parameter relationships
Optimization Workflow
The typical optimization workflow in Planar follows these steps:
- Define Parameters - Specify which strategy parameters to optimize
- Set Parameter Ranges - Define the search space for each parameter
- Choose Algorithm - Select optimization algorithm (grid search, Bayesian, etc.)
- Define Objective - Specify the metric to optimize (Sharpe ratio, profit, etc.)
- Run Optimization - Execute the optimization process
- Analyze Results - Review and validate the optimal parameters
Parameter Definition
Basic Parameter Setup
Define optimizable parameters in your strategy:
Parameter Ranges
Define the search space for optimization:
Advanced Parameter Types
Support for different parameter types:
Optimization Algorithms
Grid Search
Exhaustive search testing all parameter combinations:
Bayesian Optimization
Efficient optimization using probabilistic models:
Random Search
Random sampling of parameter space:
Evolutionary Algorithms
Genetic algorithm-based optimization:
Objective Functions
Built-in Objectives
Planar provides several built-in objective functions:
Custom Objective Functions
Define your own optimization objectives:
Multi-Objective Optimization
Optimize multiple objectives simultaneously:
Optimization Configuration
Basic Configuration
Advanced Configuration
Result Analysis
Accessing Results
Result Visualization
Statistical Analysis
Validation and Overfitting Prevention
Cross-Validation
Walk-Forward Analysis
Out-of-Sample Testing
Performance Optimization
Parallel Processing
Memory Management
Early Stopping
Advanced Techniques
Hierarchical Optimization
Ensemble Optimization
Adaptive Optimization
Best Practices
Parameter Selection
- Start Simple - Begin with a few key parameters
- Domain Knowledge - Use reasonable parameter ranges based on market knowledge
- Correlation Awareness - Avoid highly correlated parameters
- Stability Testing - Ensure parameters are stable across different market conditions
Optimization Strategy
- Coarse to Fine - Start with coarse grid search, then refine with Bayesian optimization
- Multiple Objectives - Consider multiple metrics, not just returns
- Robustness Testing - Test parameter sensitivity and stability
- Out-of-Sample Validation - Always validate on unseen data
Avoiding Overfitting
- Cross-Validation - Use proper time series cross-validation
- Parameter Constraints - Apply reasonable bounds to parameters
- Regularization - Penalize excessive complexity
- Walk-Forward Testing - Simulate realistic trading conditions
Troubleshooting
Common Issues
Slow Optimization
- Enable parallel processing
- Reduce parameter space size
- Use more efficient algorithms (Bayesian vs grid search)
Poor Results
- Check parameter ranges are reasonable
- Verify objective function is appropriate
- Ensure sufficient data for optimization
Overfitting
- Use cross-validation
- Reduce parameter complexity
- Test on out-of-sample data
Memory Issues
- Enable memory-efficient mode
- Reduce batch size
- Use disk caching
Debug Mode
See Also
- Strategy Development - Creating optimizable strategies
- Execution Modes - Testing optimized strategies
- Performance Analysis - Analyzing optimization results
- Plotting - Visualizing optimization results
- API Reference - Optimization API documentation